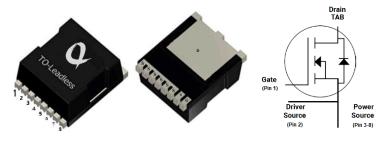


ACM120L065L Silicon Carbide Power MOSFET

Product Summary

 $V_{DS} = 650 V$ $I_D @ 25^{\circ}C = 26A$ $R_{DS(ON)} = 120 m\Omega$



Features

- High Blocking Voltage
- High Frequency Operation
- Low on-resistance
- Fast intrinsic diode with low reverse recovery

Applications

- Motor Drives
- Solar Inverters
- Onboard EV Charger
- Energy Storage

TOLL

Benefits

- Higher System Efficiency
- Parallel Device Convenience without thermal runaway
- High Temperature Application
- Hard Switching & Higher Reliability
- Easy to drive
- Server
- Telecom
- SMPS
- PD Quick Charger

Maximum Ratings (T_c=25°C unless otherwise specified)

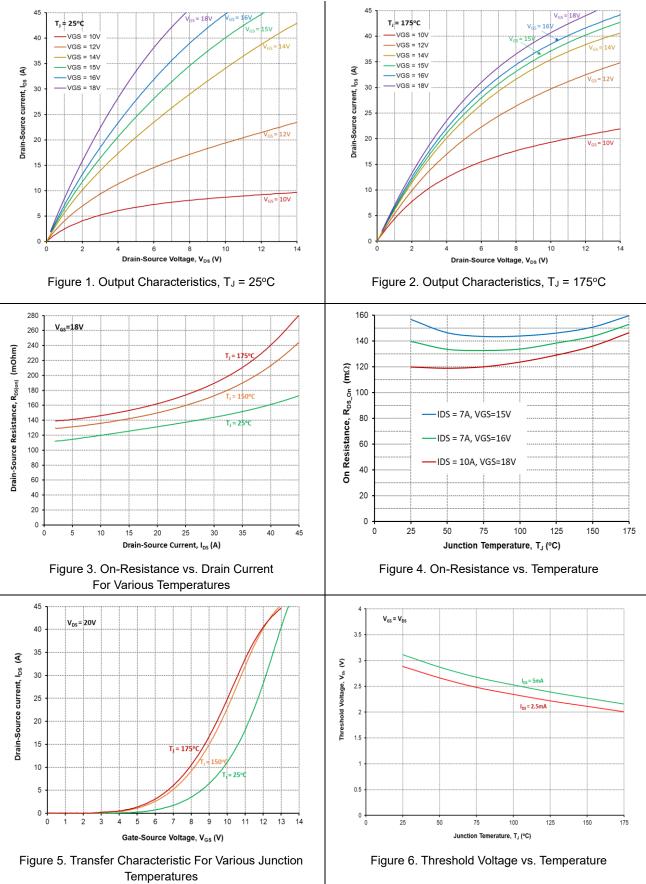
Parameter	Symbol	Test conditions	Value	Unit
Drain - Source Voltage	V _{DSmax}	V _{GS} =0V, I _D =100µA	650	V
Gate - Source Voltage (dynamic)	V _{GSmax}	AC (f>1 Hz)	-10 / +23	V
Gate - Source Voltage (static)	V _{GSop}	static	-4 / +18	V
Continuous Drain Current	I _D	V _{GS} = 18V, T _C =25°C	25	Α
		V _{GS} = 18V, T _C =100°C	18	
Pulsed Drain Current	I _{D(pulse)}	T _C =25°C	40	A
Short Circuit Capability	t _{sc}	V _{DD} =400V, V _{GS} =18V	9	μS
Short Circuit Capability	I _{DS}	V _{DD} =400V, V _{GS} =18V	130	Α
Total power dissipation	PD	Tc=25°C	111	W
Operating Junction Temperature	TJ		-55 to 175	°C
Storage Temperature	T _{STG}		-55 to 175	С°

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 100 \mu A$	650			V	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 2.5 mA$	2.0	2.8	4.0	V	
		$V_{DS} = V_{GS}, I_D = 2.5 mA, T_J = 150^{\circ}C$		2.1		V	
		$V_{DS} = V_{GS}, I_D = 2.5 \text{mA}, T_J = 175^{\circ}\text{C}$		2.0		V	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = 650V, V_{GS} = 0V	0	1	100	μA	
Gate-Source Leakage Current	I _{GSS}	V_{GS} = 18V, V_{DS} = 0V	0	10	200	nA	
Gate-Source Leakage Current	I _{GSS}	V_{GS} = -4V, V_{DS} = 0V	-200	-10	0	nA	
	R _{DS(on)}	$V_{GS} = 16V, I_D = 7 A$		139			
		V _{GS} = 16V, I _D = 7 A, T _J = 150°C		143		mΩ	
Drain-Source On-State Resistance		V _{GS} = 16V, I _D = 7 A, T _J = 175°C		153			
		$V_{GS} = 18V$, $I_{D} = 10 A$		120	150		
		V _{GS} = 18V, I _D = 10 A, T _J = 150°C		136			
		V _{GS} = 18V, I _D = 10 A, T _J = 175°C		146			
	g fs	$V_{DS} = 20V, I_{D} = 10 A,$		5.3			
Transconductance		$V_{DS} = 20V, I_D = 10 A,$ $T_J = 150^{\circ}C$		5.1		S	
		V _{DS} = 20V, I _D = 10 A, T _J = 175°C		5.1			
Input capacitance	Ciss			750			
Output capacitance	Coss	$V_{DS} = 400V, V_{GS} = 0V$		78		pF	
Reverse transfer capacitance	C _{rss}	f = 1MHz		7.4			
Coss Stored Energy	E _{oss}			7.2		μJ	
Total gate charge	Q_g	1 - 400(1) - 40(1)(10)		39		nC	
Gate-source charge	Q_gs	$V_{DS} = 400V, V_{GS} = -4V / 18V$		10			
Gate-drain charge	Q_gd	$I_{\rm D} = 10 {\rm A},$		18			
Internal gate input resistance	R _{g(int)}	$f = 1MHz$, $I_D = 0A$		2.6		Ω	
Turn-On Switching Energy	Eon			9			
Turn-Off Switching Energy	E _{OFF}	V _{DS} = 400 V, V _{GS} = -4V/18V,		6		μJ	
Turn-On Delay Time	t _{d(on)}			6		- ns	
Rise Time	t _r	I_D = 10A, $R_{G(ext)}$ =4Ω, L=200µH		6			
Turn-Off Delay Time	t _{d(off)}	L=200μΠ		14			
Fall Time	t _f			6			
Avalanche Capability	E _{AS}	V _{DD} = 100V, V _{GS} =18V, L=1mH		112		mJ	
Avalanche Capability	AV			15		Α	

Electrical Characteristics (Tc=25°C unless otherwise specified)

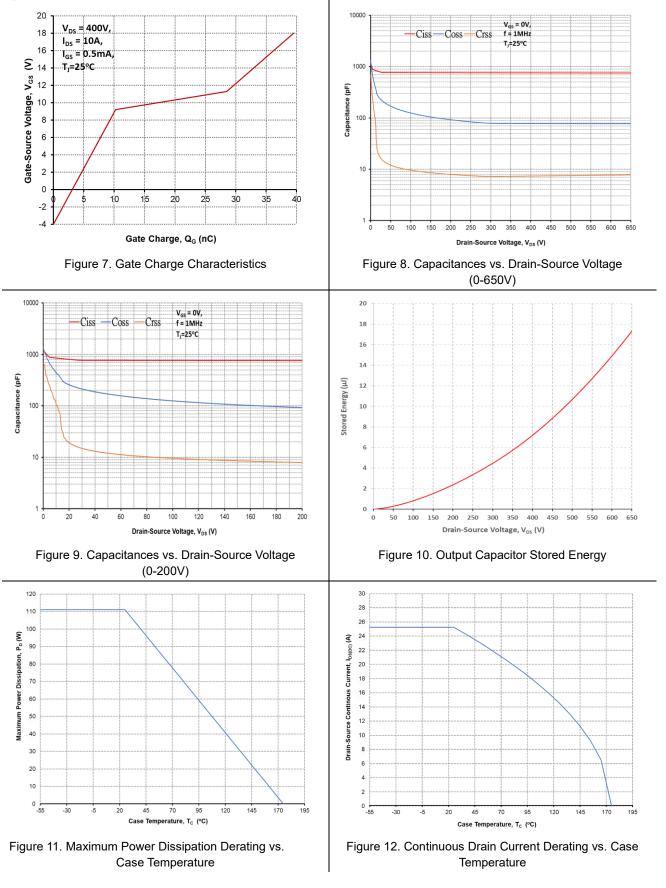
Reverse Diode Characteristics (T_c=25°C unless otherwise specified)


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Diode Forward Voltage		V_{GS} = -4V, I_{SD} = 5A,		3.8		
	V _{SD}	V_{GS} = -4V, I_{SD} = 5A,		3.4		
		T _J = 150°C		5.4		V
		V_{GS} = -4V, I_{SD} = 5A,		3.3		
		T _J = 175°C		5.5		
Continuous Diode Forward	Is	V _{GS} = -4V		20		А
Current	IS	VGS - TV		20		
Reverse Recovery time	t _{rr}			16		ns
Reverse Recovery Charge	Qrr	V_{GS} = -4V, I_{SD} = 10A,		78		nC
Peak Reverse Recovery	1	V _R = 400V, dif/dt = 1300 A/µs		9		Α
Current	Irrm			9		

Thermal Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Thermal Resistance (per device)	$R_{th(j-c)}$	junction-case		1.1	1.35	°C/W

Typical Performance


Preliminary

P.4 of 8

This document is the property of ALPHA POWER SOLUTIONS LIMITED, and not allowed to copy or transformed to other format if not under the authority approval.

Typical Performance

Revision 1.0

Preliminary

P.5 of 8

This document is the property of ALPHA POWER SOLUTIONS LIMITED, and not allowed to copy or transformed to other format if not under the authority approval.

Typical Performance

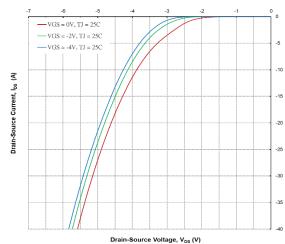
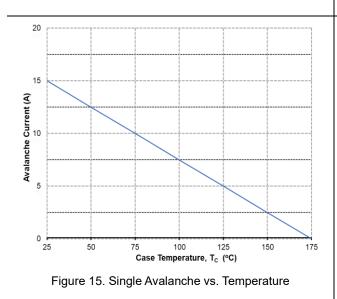



Figure 13. Body Diode Characteristics @ 25°C

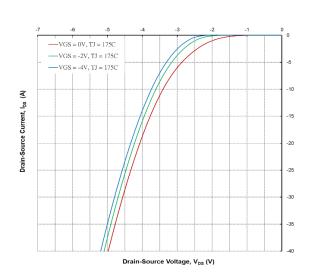
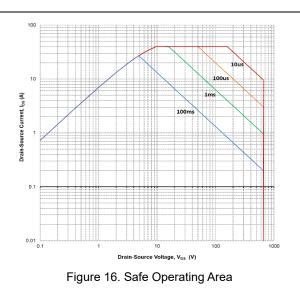
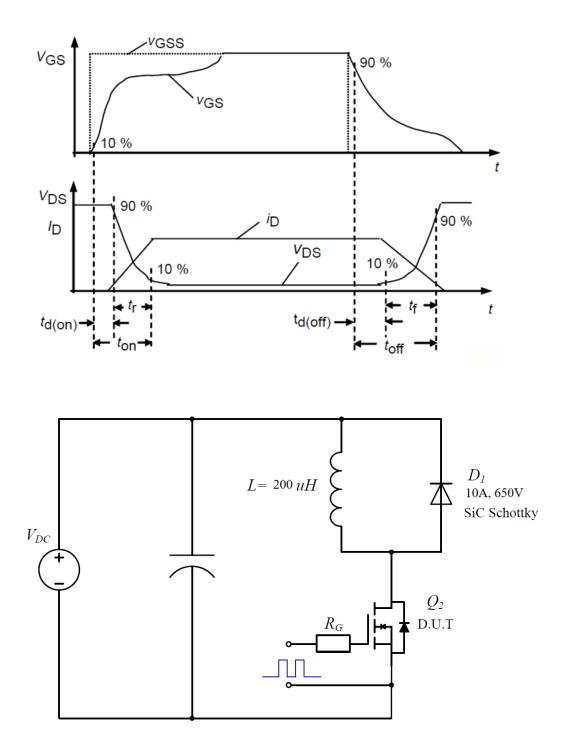
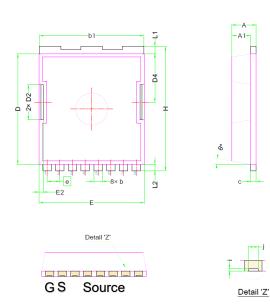
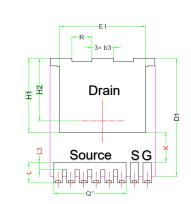
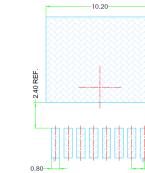




Figure 14. Body Diode Characteristics @ 175°C


Switching Times Definition and Test Circuit





Package Dimensions

(TOLL Package)

Land Pattern (Only For Reference) 8.10

1 20

13.30-

OVMDOL	DIMENSIONS					
SYMBOL	MIN.	NOM.	MAX.			
Α	2.20	2.40				
A1	1.70	1.90				
b	0.70	0.70 0.80 0				
b1	9.70	9.80	9.90			
b3	1.90	2.00	2.10			
с	0.40	0.50	0.60			
D	10.28	10.38	10.48			
D1	10.98	11.08	11.18			
D2	3.20	3.20 3.30				
D4	4.45	4.65				
Е	9.80	9.90	10.00			
E1	8.00	8.10	8.20			
E2	0.30	0.40	0.50			
е	1.20 BSC					
Н	11.58	11.68	11.78			
H1	6.95 BSC					
H2	5.89 BSC					
i	0.10 REF.					
j	0.46 REF.					
К	2.80 REF.					
L	1.60 1.90		2.10			
L1	0.60 0.70		0.80			
L2	0.50 0.60		0.70			
L3	0.60	0.70	0.80			
Ν	8					
Q	6.80 REF.					
R	1.80 1.90 2.00					
θ	10° REF.					

NOTE: 1. All DIMENSIONS ARE IN MM, ANGLES IN DEGREES. 2. DIMENSIONS DO NOT INCLUSIVE BURRS AND MOLD FLASH. 3. "*" IS FOR REFERENCE.